#### MODULE 1

# Chapter 1: Introduction to Metrology and Design of Gauges 1-1 to 1-46

| 1.1 | Introduction   | to   | Metro   | ology, | Need       | for    | inspecti  | on, |
|-----|----------------|------|---------|--------|------------|--------|-----------|-----|
|     | Fundamental    | prir | nciples | and    | definition | n, S   | tandards  | of  |
|     | measurement    | , Er | rors in | mea    | suremer    | nts, I | nternatio | nal |
|     | standardizatio | n.   |         |        |            |        |           |     |

1.2 Limits, fits and tolerances of interchangeable manufacture, Elements of interchangeable system, Hole based and shaft based systems, Tolerance grades, Types of fits, General requirements of Go & No go gauging, Taylor's principle, Design of Go & No go gauges.

| 1.1   | Principles of Engineering Metrology1-1                          |
|-------|-----------------------------------------------------------------|
| 1.1.1 | Introduction1-1                                                 |
| 1.1.2 | Interesting Facts1-2                                            |
| 1.2   | Inspection1-3                                                   |
| 1.3   | Measurement Standards1-3                                        |
| 1.3.1 | Classification of Measurement Standards1-4                      |
| 1.3.2 | Comparison between Line Standards and End Standards1-6          |
| 1.3.3 | Comparison between National Standards and Company Standards1-7  |
| 1.3.4 | Comparison between Primary, Secondary and Tertiary Standards1-7 |
| 1.4   | Standardizing Organizations1-8                                  |
| 1.5   | Terms used in Metrology                                         |
|       | /Fundamental Definitions1-9                                     |
| 1.6   | Errors in Measurement1-9                                        |
| 1.6.1 | Type of Errors1-9                                               |
| 1.6.2 | Sources of Errors1-10                                           |
| 1.7   | Accuracy and Precision1-12                                      |
| 1.7.1 | Difference between Accuracy and Precision 1-13                  |
| 1.8   | Design of Gauges1-14                                            |
| 1.8.1 | Limits1-14                                                      |
| 1.8.2 | Tolerances1-15                                                  |
| 1.8.3 | Fits1-17                                                        |
| 1.8.4 | Terminologies used in the Design of Gauges 1-18                 |
| 1.9   | Indian Standard (IS 919-1993)1-19                               |

| 1.9.1                      | Hole Basis and Shaft Basis System1-20                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1.9.2                      | Difference between Hole Basis System and Shaft Basis System1-21                                                                  |
| 1.9.3                      | Representation of Basic Size and Other<br>Parameters by Indian Standard (IS 919-1993)1-21                                        |
| 1.9.4                      | Selection of Fits1-22                                                                                                            |
| 1.9.5                      | Calculations of Dimensions for Fits1-25                                                                                          |
| 1.10                       | Limit Gauges1-31                                                                                                                 |
|                            |                                                                                                                                  |
| 1.10.1                     | Types of Gauges1-31                                                                                                              |
| 1.10.1<br>1.10.2           | Types of Gauges1-31 Some of the Commonly used Limit Gauges1-31                                                                   |
|                            |                                                                                                                                  |
| 1.10.2                     | Some of the Commonly used Limit Gauges1-31                                                                                       |
| 1.10.2<br>1.10.3           | Some of the Commonly used Limit Gauges1-31 Advantages and Limitations of Limit Gauges1-33                                        |
| 1.10.2<br>1.10.3<br>1.10.4 | Some of the Commonly used Limit Gauges1-31 Advantages and Limitations of Limit Gauges1-33 Taylor's Principle of Gauge Design1-34 |

### MODULE 2

# Chapter 2 : Flatness Test Measurement by Interference Principle, Surface Texture Measurement, Screw Thread Measurement And Gear Measurement 2-1 to 2-43

- 2.1 Principles of interference, Concept of flatness, Flatness testing, Optical flats, Optical Interferometer and Laser interferometer.
- 2.2 Surface texture measurement: importance of surface conditions, roughness and waviness, surface roughness standards specifying surface roughness parameters Ra, Ry, Rz, RMS value etc., Surface roughness measuring instruments.
- 2.3 **Screw Thread measurement :** Two wire and three wire methods, Floating carriage micrometer.
- 2.4 **Gear measurement :** Gear tooth comparator, Master gears, Measurement using rollers and Parkinson's Tester.

| 2.1   | Flatness Test Measurement |     |
|-------|---------------------------|-----|
|       | by Interference Principle | 2-1 |
| 2.1.1 | Concept of Flatness       | 2-1 |
| 2.2   | Interference Method       | 2-2 |
| 2.2.1 | Introduction              | 2-2 |





| 2.2.2   | Terms Associated with the Interferometry2-3                            |
|---------|------------------------------------------------------------------------|
| 2.2.3   | Optical Flats - Study of Surface Textures under                        |
|         | Monochromatic Light Source2-5                                          |
| 2.2.4   | Types of Interferometers2-6                                            |
| 2.2.4.1 | N.P.L Flatness Interferometer2-6                                       |
| 2.2.4.2 | Pitter - N.P.L Gauge Interferometer2-7                                 |
| 2.2.4.3 | Laser Interferometer2-8                                                |
| 2.3     | Surface Roughness Measurement2-9                                       |
| 2.3.1   | Introduction2-9                                                        |
| 2.3.2   | Classification of Surface Irregularities2-10                           |
| 2.3.3   | Elements of Surface Texture2-11                                        |
| 2.3.4   | Analysis of Surface Traces2-13                                         |
| 2.3.5   | Methods of Measuring Surface Roughness2-16                             |
| 2.3.5.1 | Comparative Method2-16                                                 |
| 2.3.5.2 | Direct Instrument Method -Measuring Surface Finish by Stylus Probe2-17 |
| 2.4     | Screw Thread Measurement2-20                                           |
| 2.4.1   | Screw Thread Terminologies2-21                                         |
| 2.4.2   | Thread Form Errors2-21                                                 |
| 2.4.3   | Measurement of Major, Minor and Effective Diameter2-23                 |
| 2.4.3.1 | Measurement of Major Diameter2-23                                      |
| 2.4.3.2 | Measurement of Minor Diameter2-25                                      |
| 2.4.3.3 | Measurement of Effective Diameter                                      |
| 2.5     | Gear Measurement2-33                                                   |
| 2.5.1   | Gear Terminologies2-34                                                 |
| 2.5.2   | Sources of Error in Manufacturing of Gears 2-35                        |
| 2.5.3   | Gear Errors2-35                                                        |
| 2.5.4   | Spur Gear Measurement2-36                                              |
| 2.5.4.1 | Pitch Measurement2-36                                                  |
| 2.5.4.2 | Measurement of Tooth Thickness2-37                                     |
| 2.5.4.3 | Checking of Gear Profile2-41                                           |
| 2.5.4.4 | Run OutChecking of the Gear2-41                                        |
| 2.5.4.5 | Checking of Lead2-41                                                   |
| 2.5.4.6 | Checking of Backlash2-41                                               |
| 2.5.4.7 | Concentricity Measurement2-42                                          |
|         |                                                                        |
| 2.5.4.8 | Alignment Checking2-42                                                 |
| 2.5.5   | Gear Rolling Tester/ Parkinson Gear Tester 2-42                        |

#### MODULE 3

#### Chapter 3 : Introduction To Measurement 3-1 to 3-23

- 3.1 Significance of Mechanical Measurements,
  Classification of measuring instruments, generalized
  measurement system, types of inputs : Desired,
  interfering and modifying inputs.
- 3.2 Static characteristics: Static calibration, Linearity, Static Sensitivity, Accuracy, Static error, Precision, Reproducibility, Threshold, Resolution, Hysteresis, Drift, Span and Range etc.

| Dr     | iff, Span and Range etc.                   |
|--------|--------------------------------------------|
| 3.1    | Measurement                                |
| 3.1.1  | Significance of Mechanical Measurements3-1 |
| 3.1.2  | Classification of Measuring Instruments3-1 |
| 3.1.3  | Generalized Measurement System3-3          |
| 3.1.4  | Types of Inputs3-4                         |
| 3.2    | Static Characteristics 3-5                 |
| 3.2.1  | Accuracy3-6                                |
| 3.2.2  | Precision3-6                               |
| 3.2.3  | Error3-7                                   |
| 3.2.4  | Scale Range or Scale Span3-8               |
| 3.2.5  | Reproducibility3-9                         |
| 3.2.6  | Drift3-9                                   |
| 3.2.7  | Repeatability3-9                           |
| 3.2.8  | Sensitivity                                |
| 3.2.9  | Linearity3-10                              |
| 3.2.10 | Hysteresis3-10                             |
| 3.2.11 | Threshold3-10                              |
| 3.2.12 | Dead Time3-11                              |
| 3.2.13 | Dead Zone3-11                              |
| 3.2.14 | Resolution3-11                             |
| 3.2.15 | Stability3-11                              |
| 3.2.16 | Tolerance3-11                              |
| 3.2.17 | Calibration3-11                            |
| 3.3    | Errors in Measurement3-13                  |
| 3.3.1  | Sources of Error3-14                       |
| 3.3.2  | Types of Error and Remedies3-14            |
| 3.3.3  | Limiting Errors3-15                        |

|   | • | , |
|---|---|---|
| 7 | 3 | 7 |
| • | ٦ | 7 |

| 3.3.4 | Relative Limiting Error3-16                        |
|-------|----------------------------------------------------|
| 3.3.5 | Combination of Quantities with limiting Errors3-16 |
| 3.3.6 | $Statistical \ Analysis \ of \ Measurements3-20$   |
| 3.3.7 | Normal or Gaussian Curve of Errors 3-22            |

#### **MODULE 4**

## Chapter 4 : Measurements of Displacement and Strain 4-1 to 4-23

- 4.1 Displacement Measurement : Transducers for displacement, displacement measurement, potentiometer, LVDT, Capacitance Types, Digital Transducers (optical encoder) , Nozzle Flapper Transducer.
- **4.2 Strain Measurement :** Theory of Strain Gauges, gauge factor, temperature Compensation, Bridge circuit, orientation of strain gauges for force and torque, Strain gauge based load cells and torque sensors.

| 4.1     | Basics of Sensors and Transducers4-1                  |
|---------|-------------------------------------------------------|
| 4.1.1   | $Characteristics/Requirements\ of\ Transducers\\ 4-2$ |
| 4.2     | Displacement Measurement4-2                           |
| 4.2.1   | Potentiometer4-2                                      |
| 4.2.2   | Linear Variable Differential Transducer (LVDT)4-4     |
| 4.2.3   | Capacitive Displacement Transducer4-7                 |
| 4.2.4   | Optical Encoder(Digital Transducer)4-8                |
| 4.2.5   | Nozzle Flapper Transducer4-9                          |
| 4.3     | Strain Measurement 4-10                               |
| 4.3.1   | Strain Gauge4-10                                      |
| 4.3.2   | Gauge factor4-11                                      |
| 4.3.3   | Types of Strain Gauges 4-12                           |
| 4.3.4   | Strain Gauge Circuits 4-17                            |
| 4.3.4.1 | Strain Gauge with Potentiometer Circuit 4-17          |
| 4.3.4.2 | Strain Gauge with Wheatstone Bridge Circuit4-18       |
| 4.3.5   | $Temperature\ Compensation4-21$                       |
| 4.3.6   | Orientation of strain gauge for force and torque4-22  |

| 4.3.7 | Strain gauge based Load calls4-22     |
|-------|---------------------------------------|
| 4.3.8 | Strain gauge based torque sensors4-23 |

## Chapter 5 : Measurements of Pressure, Flow and Temperature 5-1 to 5-37

- 4.3 **Pressure Measurement**: Elastic pressure transducers viz. Bourdon tubes, diaphragm, bellows and piezoelectric pressure sensors, High Pressure Measurements, Bridgeman gauge. Vacuum measurement: Vacuum gauges viz. McLeod gauge, Ionization and Thermal Conductivity gauges.
- 4.4 **Flow Measurement :** Bernoullis flowmeters, Ultrasonic Flowmeter, Magnetic flow meter, rotameter.
- 4.5 **Temperature Measurement :** Electrical methods of temperature measurement Resistance thermometers, thermistors and thermocouples, Pyrometers.

| 5.1     | Pressure Measurement5-1              |
|---------|--------------------------------------|
| 5.1.1   | Elastic Pressure Transducer5-2       |
| 5.1.2   | Piezoelectric Pressure Transducer5-5 |
| 5.1.3   | High Pressure Measurements5-7        |
| 5.1.3.1 | Bridgeman gauge5-7                   |
| 5.1.4   | Vacuum Measurement5-8                |
| 5.1.4.1 | McLeod Gauge5-8                      |
| 5.1.4.2 | Ionization Gauge5-10                 |
| 5.1.4.3 | Thermal Conductivity Gauge5-11       |
| 5.1.5   | Electrical Pressure Transducers5-12  |
| 5.1.5.1 | Resistive Pressure Transducer5-12    |
| 5.1.5.2 | Capacitive Pressure Transducers5-13  |
| 5.1.5.3 | Inductive Pressure Transducers5-16   |
| 5.2     | Flow Measurement5-17                 |
| 5.2.1   | Bernoulli Flowmeters5-17             |
| 5.2.2   | Ultrasonic Flowmeters5-18            |
| 5.2.3   | Magnetic Flowmeter5-19               |
| 5.2.4   | Rotameter5-20                        |
| 5.3     | Temperature Measurement5-22          |
| 5.3.1   | Resistance Thermometer5-22           |
| 5.3.2   | Thermistor5-26                       |



Mechanical Measurements and Controls (MU)

**Table of Contents** 

#### **Chapter 9: Time Response Analysis**

9-1 to 9-42

Transient and steady state analysis of first and second order system: Time Domain specifications. Step response of second order system. Steady-state error, error coefficients, steady state analysis of different type of systems using step, ramp and parabolic inputs.

| 9.1      | Introduction9-1                                                                              |
|----------|----------------------------------------------------------------------------------------------|
| 9.1.1    | Time Domain9-1                                                                               |
| 9.2      | Inputs Supplied to a System9-3                                                               |
| 9.3      | Steady State Response9-4                                                                     |
| 9.3.1    | Effect of Input R (s) on Steady State Error9-5                                               |
| 9.3.2    | Effect of Open Loop Transfer Function<br>G(s) H(s) on Steady State Error e <sub>SS</sub> 9-8 |
| 9.4      | Subjecting a Type 0 System to a Step, Ramp and Parabolic Input9-8                            |
| 9.4.1    | Step Input to a Type 0 System9-8                                                             |
| 9.4.2    | Ramp Input to a Type 0 System9-9                                                             |
| 9.4.3    | Parabolic Input to a Type 0 System9-9                                                        |
| 9.5      | Subjecting a Type 1 System to a Step, Ramp and Parabola Input9-10                            |
| 9.5.1    | Step Input to a Type 1 System9-10                                                            |
| 9.5.2    | Ramp Input to a Type 1 System9-10                                                            |
| 9.5.3    | Parabolic Input to a Type 1 System9-11                                                       |
| 9.6      | Subjecting a Type 2 System to a Step,                                                        |
|          | Ramp and Parabola Input9-11                                                                  |
| 9.6.1    | Step Input to a Type 2 System9-11                                                            |
| 9.6.2    | Ramp Input to Type 2 System9-12                                                              |
| 9.6.3    | Parabola Input to Type 2 System9-12                                                          |
| 9.6.4    | Examples on Steady State Response9-13                                                        |
| 9.7      | Transient Response 9-19                                                                      |
| 9.7.1    | Analysis of First Order Systems9-19                                                          |
| 9.7.2    | Analysis of Second Order System9-21                                                          |
| 9.7.2(A) | Damping Factor9-22                                                                           |
| 9.7.2(B) | Natural Frequency of Oscillation $(\omega_n)$ 9-22                                           |
| 9.7.2(C) | Position of Poles in a 2 <sup>nd</sup> Order System9-22                                      |
| 9.7.3    | Effect of $\xi$ on the Position of Closed Loop Poles9-23                                     |
| 9.7.4    | Unit Step Response of a 2 <sup>nd</sup> Order System9-23                                     |

| 9.7.5    | Time Domain of a Second Order                                                          |
|----------|----------------------------------------------------------------------------------------|
| 9.7.5(A) | Derivation of Unit Impulse Response of a $2^{\rm nd}$ Order Underdamped System9-26     |
| 9.7.5(B) | Derivation of Unit Step Response of a $$2^{\rm nd}$$ Order Underdamped System9-27      |
| 9.8      | Transient Response Specifications (Design Specifications for Second Order Systems)9-29 |
| 9.9      | Solved Examples on Transient Response9-31                                              |

## Chapter 10 : Stability Analysis

10-1 to 10-23

Introduction to concepts of stability, The Routh criteria for stability.

MODULE 6

| Chapter 11 : Root Locus 11-1 to 11-40 |                                                      |  |  |  |
|---------------------------------------|------------------------------------------------------|--|--|--|
| 10.8                                  | Solved Examples10-19                                 |  |  |  |
| 10.7                                  | Application of Routh's Criterion10-19                |  |  |  |
| 10.6.3                                | Robust Stability10-17                                |  |  |  |
| 10.6.2                                | Relative Stability10-17                              |  |  |  |
| 10.6.1                                | Absolute Stability10-17                              |  |  |  |
| 10.6                                  | $Absolute, Relative \ and \ Robust \ Stability10-17$ |  |  |  |
| 10.5.2                                | Special Case 210-14                                  |  |  |  |
| 10.5.1                                | Special Case 110-12                                  |  |  |  |
| 10.5                                  | Routh Criterion Special Cases10-12                   |  |  |  |
| 10.4                                  | Routh Stability Criterion10-9                        |  |  |  |
| 10.3.1                                | Disadvantages of the Hurwitz Criterion10-9           |  |  |  |
| 10.3                                  | Hurwitz Stability Criterion10-7                      |  |  |  |
| 10.2                                  | Time Response of Poles10-2                           |  |  |  |
| 10.1.3                                | Marginally Stable System10-2                         |  |  |  |
| 10.1.2                                | Unstable System10-1                                  |  |  |  |
| 10.1.1                                | Stable System10-1                                    |  |  |  |
| 10.1                                  | Introduction10-1                                     |  |  |  |

#### Stability analysis using Root locus.

| 11.1 | Introduction1                  | 1-1 |
|------|--------------------------------|-----|
| 11.2 | Angle and Magnitude Condition1 | 1-2 |



| 11.3    | Construction of Root Locus11-3                           | Chapte  | r 13 : Bode Plots                                                   | 13-1 to 13-44 |
|---------|----------------------------------------------------------|---------|---------------------------------------------------------------------|---------------|
| 11.3.1  | General Method for Drawing Root Locus11-3                |         |                                                                     |               |
| 11.4    | Determining the Value of k from                          | Stabili | ty analysis using Bode plot.                                        |               |
|         | the Damping Ratio11-8                                    | 13.1    | Introduction                                                        | 13-1          |
| 11.5    | Steps for Solving Problems on Root Locus 11-9            | 13.2    | Log-Scales                                                          | 13-2          |
| 11.6    | Solved Examples11-9                                      | 13.2.1  | Why Do We Use the Log Scales on the X                               | X-axis ?13-2  |
| 11.7    | Some Additional Important Points11-38                    | 13.2.2  | What are Log-Scales ?                                               | 13-2          |
| 11.7.1  | More Zeros and Less Poles11-38                           | 13.2.3  | Scale Marking                                                       |               |
| 11.7.2  | Value of Gain Margin11-38                                | 13.3    | Standard Form for GH (j\omega)                                      | 13-4          |
| 11.7.3  | Phase Margin from Root Locus11-38                        | 13.4    | Bode Plots of Standard Factors                                      |               |
| 11.8    | Effect of Addition of Poles and Zeros on Root Locus11-38 | 13.4.1  | Bode Gain Factor K <sub>1</sub>                                     |               |
| 11.8.1  | Effect of Addition of Poles - Dominant Poles11-38        | 13.4.2  | Poles at Origin or Integral Factor $\left(\frac{1}{j\omega}\right)$ | 13-5          |
| 11.8.2  | Effect of Addition of Zeros11-39                         | 13.4.3  | Zeros at Origin or Derivative Factor (jo                            | =             |
| Chapter | 12 : Frequency Response Analysis 12-1 to 12-14           | 13.4.4  | First Order Poles $\frac{1}{\left(1+j\frac{\omega}{p_1}\right)}$    | 13-7          |
| Experi  | mental determination of frequency response.              | 13.4.5  | First Order Zeros $\left(1+j\frac{\omega}{z_1}\right)$              | 13-9          |
| 12.1    | Introduction12-1                                         | 13.4.6  | Second Order Poles                                                  |               |
| 12.2    | Frequency Domain12-2                                     | 13.4.7  | Second Order Zeros                                                  | 13-12         |
| 12.2.1  | Sinusoidal Response of a Linear System 12-2              | 13.5    | Frequency Domain Specifications                                     | 13-12         |
| 12.2.2  | Methods Used in Frequency Domain 12-3                    | 13.5.1  | Gain Margin (G.M.)                                                  | 13-12         |
| 12.2.3  | Advantages of Frequency Domain Analysis 12-3             | 13.5.2  | Phase Margin ( $\phi_{pm}$ )                                        |               |
| 12.2.4  | Time Domain and Frequency Domain Analysis 12-4           | 13.5.3  | Bandwidth                                                           |               |
| 12.2.5  | Disadvantages of Frequency Domain Methods 12-4           | 13.5.4  | Cut off Frequency ( $\omega_c$ )                                    |               |
|         |                                                          | 13.5.5  | Cut off Rate                                                        |               |
| 12.3    | Transfer Function and Frequency Domain 12-4              | 13.5.6  | Resonance Peak Frequency (M <sub>P</sub> )                          |               |
| 12.3.1  | Transfer Function and Frequency                          | 13.5.7  | Resonant Frequency (ω <sub>p</sub> )                                |               |
|         | Domain of a R - C Circuit12-4                            | 13.5.8  | Gain Crossover Frequency ( $\omega_{gc}$ )                          |               |
| 12.4    | Frequency Domain Specifications 12-6                     | 13.5.9  | Phase Margin Angle (γ)                                              |               |
| 12.5    | Co-relation between Time and                             | 13.5.10 | Phase Crossover Frequency ( $\omega_{pc}$ )                         | 13-14         |
|         | Frequency Domain12-6                                     | 13.6    | Relative Stability                                                  | 13-14         |
| 12.5.1  | Derivation of $\omega_{\Gamma}$ and $M_{\Gamma}$         | 13.7    | Steps for Solving Bode Plots                                        | 13-15         |
| 12.5.2  | Relationship between Frequency Domain                    | 13.8    | Summary of Bode Magnitude and Phase Plots of Various Terms          | 13-16         |
|         | Specifications and Time Domain Specifications 12-8       | 13.9    | How to Draw Lines of 20, 40, 60 dB/o                                |               |
| 12.6    | Bandwidth 12-9                                           | 13.10   | Advantages of Bode Plots                                            |               |
| 12.7    | Solved Examples12-10                                     | 13.11   | Solved Examples                                                     | 13-19         |

